Selective *cis*-Isomerisation of But-1-ene by Homogeneous Catalysis with Triphenylphosphinenickel Complexes

By Hiroyoshi Kanai

(Department of Hydrocarbon Chemistry, Kyoto University, Kyoto, Japan)

Summary The treatment of but-1-ene with a mixture of tin(II) chloride and triphenylphosphinenickel complexes prepared from $(PPh_3)_2NiX_2$ (X = Cl, Br, I), PPh₃, and zinc leads to selective *cis*-isomerisation.

WHEN the nickel complexes $(PPh_3)_2NiX_2$ (X = Cl, Br, I), were treated with zinc in the presence of triphenylphosphine in tetrahydrofuran at room temperature, a red-brown solution was obtained which appeared to contain a mixture of Ni⁹ and Ni^I, since the solution gave a weak e.s.r. signal typical of Ni^I, and when $(PPh_3)_2NiX_2$ was added, the solution yielded an intense e.s.r. signal of Ni^I. Heimbach found that a solution of the complexes, Ni $(PPh_3)_4$ and $(PPh_3)_2NiX_2$ in ether,¹ contained Ni $(PPh_3)_4$, $(PPh_3)_3NiX$ and species from which PPh₃ had dissociated.

The isomerisation of but-1-ene was catalysed by this solution at 0 °C as shown in the Table. The reactivity and

TABLE Catalytic isomerisation of but-1-ene by (PPha) NiX_-PPha-Zn systems and the effects of the addition of SnCl.

x	Additive (mmol)	Time (min)	1-C4H8	Product t-2-C ₄ H ₈	(mol %) c-2-C ₄ H ₈	cis:trans
Cl		30	92.9	1.77	5.31	3.0
Br	_	30	97.6	0.51	1.89	3.7
Iр	_	30	95.9	0.45	3.61	8.1
Cl	SnCl. 0.27	5	75.4	1.12	23.5	20.9
	0.71	5	64.0	1.26	34.7	27.7
	1.57	5	40.5	1.73	59.1	34.1
	2.97	5	14.4	2.27	83.3	36.8
Br	SnCl, 2.84	5	47.0	1.22	51.8	42.5
[Ъ	SnCl, 2.92	5	80.6	0.39	19.1	49.3
	Equilibrium value		2.0	74.2	23.8	0.32

^a The catalytic solution was prepared by adding 1.5 g of Zn to a mixture of 0.5 mmol of $(PPh_3)_2NiX_3$ and 0.75 mmol of PPh_3 in 20 ml of tetrahydrofuran at room temperature and then treating the filtrate with 0.25 mmol of $(PPh_3)_2NiX_3$. The reaction tube was charged with 3 ml of catalyst solution and 2.3 mmol of but-1-ene, sealed, and then brought to 0 °C. ^b 1.0 mmol of PPh₃ was used.

the ratio of cis-but-2-ene to trans-but-2-ene were dependent upon the halide bonded to the nickel atom, indicating that the catalytically active species contained Ni-X bonds. The stereoselectivity increased with the size of the halide in a similar manner to the isomerisation of but-1-ene with (PPh₂)₂CoX₂- and (PPh₂)₂NiX₂-NaBH₄ catalytic systems.²

The addition of SnCl₂ to the catalysis solution produced a solution which had a higher catalytic activity and gave an increased cis-: trans-but-2-ene ratio which increased with increasing concentrations of SnCl₂ and was also affected by the halide bonded to nickel. This may be due to coordination of SnCl₂ to the Ni^L-X complex to form Ni^L-SnXCl₂ analogous to the formation of (C₅H₅)Ni(PPh₃)(SnCl₃) from (C₅H₅)Ni(PPh₃)Cl and SnCl₂.³

The ratio of cis-: trans-but-2-enes did not decrease until but-1-ene was almost consumed. The *cis*-selectivity was as high as in the isomerisation of but-1-ene by base catalysts.4 The characteristic feature of homogeneous catalytic systems is that the scrambling of but-2-ene is very slow compared to the double bond migration of but-1-ene.

SnBr₂ was less effective than SnCl₂ in both catalytic activity and cis-selectivity, and there was no detectable isomerisation of but-1-ene with a nickel-iodide complex and SnI,.

The author thanks Professor K. Tarama and Dr. S. Yoshida for their generous support of this work.

(Received, 16th November 1971; Com. 1981.)

¹ P. Heimbach, Angew. Chem., 1964, 76, 586.

² H. Kanai, S. Sakaki, and K. Tarama, Shokubai, 1969, 11, 142.

³ M. van den Akker and F. Jellinek, *J. Organometallic Chem.*, 1967, 10, 37. ⁴ W. O. Haag and H. Pines, *J. Amer. Chem. Soc.*, 1960, 82, 387; S. Bank, A Schriesheim, and C. A. Rowe, Jun., *ibid.*, 1965, 87, 3244.